Comprehensive Description of Comorbidity for Autism Spectrum Disorder in a General Population


David Cawthorpe, PhD

Perm J 2017;21:16-088 [Full Citation]
E-pub: 12/23/2016


Context: Few published studies of autism spectrum disorder (ASD) and comorbidity are population based.
Objective: To describe the comorbidity of ASD and disorders listed in the main classes of the International Classification of Diseases, Ninth Revision (ICD-9) in a general population.
Design: Direct physician billing data for the city of Calgary, Alberta, Canada, for the treatment of any presenting concern in the Calgary Health Zone (n = 763,449) from 1994 to 2009 were extracted. Diagnosed ICD-9 disorders (independent variable) were grouped into 17 categories using ICD-9 diagnosis codes. ASD (dependent variable) was classified under ICD-9 Code 299. Individuals with and without independent disorder classes were counted by the presence or absence of any ASD. Odds ratios (ORs) and 95% confidence intervals of the association were calculated.
Main Outcome Measures: ORs of ASD comorbidities.
Results: Annual rates of ASD increased 3.9-fold for males and 1.4-fold for females. Diagnosed disorders ranked by OR in the independent ICD-9 categories indicated that males with ASD had overall higher ORs (> 1.0) in 11 main ICD-9 classes, and females with ASD had higher ORs (> 1.0) in 12 main ICD-9 classes. Males with ASD had lower ORs in 4 main ICD-9 disease classes; females with ASD had lower ORs related only to the main class “complications of pregnancy and childbirth.” Five main ICD-9 classes were not significant for males or females.
Conclusions: Patients with ASD have significant comorbidity of physical disorders. This finding may inform other areas of research and assessment in clinical management.


The annual prevalence of autistic spectrum disorder (ASD) is increasing and in 2014 was found to be 2.24% in children1 and 1% in the general population.2 Often, these disorders are long term and debilitating. A literature review of ASD focusing on comorbidity revealed few articles that were based on population studies.3,4 Studies of comorbidity with ASD focus primarily on other psychiatric disorders,5-23 neurologic disorders,24-28 or congenital disorders.29-32 Few studies focused on physical disorders,33-35 and fewer still focused on adults.36 In this study, the physical comorbidities associated with ASD and the main disorder classes from the International Classification of Diseases, Ninth Revision (ICD-9) were examined in a population including children and adults.


Using a population-based sample, the unique identifiers of 763,449 individuals (46% male) were selected from the regional health service registry in the Calgary Health Zone (Calgary, Alberta, Canada). These identifiers were merged with all direct physician billings (n = 90,611,984) from 1993 to 2010 for treatment of any presenting concern, resulting in 16 years of data (1994-2009). Each billing record pertained to services rendered to patients on specified dates, resulting in the assignment of an ICD diagnostic code, including V-codes. This study employed an anonymous data set that included ICD-9 diagnoses, visit date, age at index visit, sex, and visit cost paid to the attending physician.

The annual population rates were calculated for ASD using the number of unique individuals who received a diagnosis from a physician in any given year, denominated by the annual civic census from 1994 to 2009. The 16-year prevalence rate was based on a standard population estimate (eg, 2002). Additionally, the average 16-year cost per patient for ASD was calculated and compared with those costs for any other mental disorder and those for patients with no mental disorders.

The data were collapsed into 2 groups representing the dependent variable. Counts in the major class ICD-9 diagnostic groupings given the presence or absence of any ASD were expressed as the odds ratio (OR = [AD/BC]) of the remaining classes of ICD-9 disorders (independent variables) compared to those without ASD. A, B, C, and D (columns in Table 1) refer to the corresponding 2 X 2 cells in the OR formula (as defined in the footnote to Table 1 and used to calculate the ORs in Table 2). Differences were based on the comparison of overlapping and nonoverlapping 95% confidence intervals (95% CIs). For rates, significant statistical differences between proportions in any given year were estimated by comparison of the 95% CIs using the standard formula, wherein nonoverlapping 95% CIs represent significant differences (p < 0.05, with z set to 1.96). The comorbidity of ASD within the main ICD-9 classes of disorders was examined. Diagnosed ICD-9 disorders (independent variable) were grouped into 17 categories on the basis of ICD-9 Codes 001 to 319 and 360 to 999. The dependent variable, ASD, was classified as ICD-9 Codes 320 to 359. Data for each sex was analyzed separately.

16 088

16 088p3


The sample consisted of 583 females (286 < 19 years old) and 1457 males (1207 < 19 years old) with ASD. On the first diagnosis for all ages, females’ age averaged 29 years (median = 19 years) and males’ age averaged 14 years (median = 11 years). On the first diagnosis for those younger than age 19 years, females’ age averaged 11 years (median = 10.7 years) and males’ age averaged 10 years (median = 9.6 years).

The 16-year cumulative rate of ASD in the population was 2.1 per 1000 for females and 8.7 per 1000 for males younger than age 19 years. The total population annual rate between 1994 and 2009 increased 4.5-fold for males from 2 to 9 per 10,000 and for females 1.6-fold from 2.5 to 4 per 10,000.

As shown in Table 3, the group with ASD had a greater overall 16-year average total visit cost per patient than those with any other mental disorder or those without any mental disorder (eg, only somatic or biomedical disorders).

Table 1 provides the counts in each cell constructing the OR calculation for males and females. The counts in each cell represent the unique individuals in that group required to calculate the OR. A indicates patients with neither ASD nor ICD-9 disorder; B and C, those with one and not the other; and D, those with both disorders. Note in Table 1 that complications of pregnancy and childbirth (ICD-9 Codes 630-679) refer in males to newborns or fetuses (n = 32), whereas in females it refers to both newborns or fetuses and adolescent females of childbearing age (n = 97).

Table 2 shows the ORs for males and females across 17 independent ICD-9 physical/biomedical disorder categories. The ORs were based on the cell values in Table 1 used in the OR formula (mentioned in the Methods section) given the presence or absence of ASD. Males with ASD were significantly less likely than males without ASD to have disorders related to the endocrine system, musculoskeletal system and connective tissue, neoplasms, or circulatory system. Females with ASD were significantly less likely to have disorders related to complications of pregnancy and childbirth.

Males with ASD were significantly more likely to have perinatal conditions; diseases of the sense organs or the respiratory system; congenital anomalies; symptoms, signs, and ill-defined conditions; diseases of the skin and subcutaneous tissue; infectious diseases; nervous system diseases, complications of pregnancy and childbirth, diseases of the digestive system or the genitourinary system, or injury and poisoning. Females with ASD were significantly more likely to have disorders related to congenital anomalies; sense organs; symptoms, signs, and ill-defined conditions; respiratory system; skin and subcutaneous tissue; injury and poisoning; digestive system; infectious diseases; nervous system; perinatal conditions; endocrine, nutritional, and metabolic diseases, and immunity disorders; and blood and blood-forming organs. ORs for males were greater overall for males compared with females, because males more frequently had ASD (see Table 2).

16 088p3a


The literature reports ASD occurring in 1% to 4% of the population.1 The present study summarized the 16-year cumulative prevalence and overall changes in annual rates of ASD. The cumulative rate reported here is closest to the lower limit reported in the literature. The differences may be because the higher rates reported in the literature were based on results of a national survey, whereas this study was based on a physician-assigned diagnosis. The rate of all physician-diagnosed mental disorders has increased for children.37 Similarly, there has been an increase in the annual rate of ASD that was greater for males than females, although not as great as that reported in the literature. The reasons for the increased ASD rates are multifold and include any or all of the following: more diagnostic precision (reduction in false-negatives), increased public awareness (inflation of false-positives), or a real increase in the ASD rate.

Recent studies focusing on the relationship between ASD and comorbid disorders have tended, in part, to focus on general psychiatric comorbidity,38 with most studies focusing on specific psychiatric disorders, such as primarily attention deficit-hyperactivity disorder39-41and, less frequently, anxiety, epilepsy, and neurologic disorders.41 One study of physical disorders focused only on motor skills.34 Although less frequent, genetic studies tended to examine comorbidity in relation to identifying potential overlapping phenotypic or genetic homology, or both.

Most comparable to the results of the present study was a time-series study of an electronic health record.33 However, that study focused on distinguishing between fragile X syndrome and other ASD-associated syndromes. Aligned with this finding is the relatively high occurrence of congenital anomalies in patients with ASD for both sexes. Congenital defects are beyond the scope of the present study, which has described the physical and biomedical comorbidities of ASD, nevertheless each broad diagnostic category includes the range of subsumed diagnoses. When studied in a single large population, the interrelationship of comorbid disorders is revealed, and these patterns may be compared between disorders such as other ASD syndromes and disorders, such as fragile X. The present population-based description of the physical and biomedical disorders of ASD makes such comparative study possible. Most focused comparative study of symptom comorbidity, such as with epilepsy, has been used to provide insight into the origin of ASD, yet, unlike the present study, the samples have been too small to provide conclusive evidence of association.

Studies of ASD comorbidity have sought to understand issues of etiology42 and mechanism. For example, disruption of the microbiota-gut-brain axis has recently become a focus of study in ASD.38,43-46 The ability to examine ASD comorbidities in a population over time holds the potential to rank-order the relative importance of a specific comorbid disorder associated with ASD and to inform research. Being able to accomplish the ranked comparison, as illustrated in Table 2, in terms of the comorbidity of ASD and the main ICD-9 classes of disorder, permits more precise examination related to the comparative magnitude and prevalence of the comorbidities.

Importance of Present Findings

The present study examined comorbidity in the population. As it stands, this study makes an original contribution to the study of ASD comorbidity, against which there are few, if any, studies to compare. Substantial differences and similarities were found between males and females (see Table 2). For example, perinatal conditions are comparatively high for males, whereas females are less likely than males to have complications of pregnancy and childbirth. The present work supports the contention that there is a relationship between perinatal conditions, complications of pregnancy and childbirth, and ASD.47,48 Otherwise, although males with ASD are more intensely affected than females, males and females are comparable on the basis of the relative order of sensory organ and respiratory disorders.

The results of the present study comparing the relationship between ASD and the main classes of ICD-9 disorders suggest that a great deal of research must yet be undertaken to understand the intricacies of these relationships in more precise terms. For example, there are about 1000 main diagnoses and more than 13,000 subdiagnoses within 19 main categories of disorder. This article serves as a simple example of a method for proceeding with further study. The broad-stroke approach to analysis has revealed that more precise relationships must exist within these data.

Study Limitations

The limitations of the approach taken to the study of comorbidity in this study have been described.37 The usual threat to validity is the reliability of physician-assigned diagnoses, which is assumed to be a normally distributed source of error.

Another limitation lies in examining only main categories of ICD-9 disorders. This approach reveals associations observable within these broad categories, yet masks relationships between ASD and more specific subclasses of disorder. The present study points to the need for a more detailed disorder-specific analysis.

Examination of the temporal order of the classes of disorders and specific disorders associated with ASD was beyond the scope of the present study. Analysis of temporal order has for other disorders revealed potential mechanisms underpinning disease processes.49 Comprehensive temporal-order analysis represents an important next step in the evolution of the presented approach to the population-based analysis of comorbidity.


Traditionally, study of comorbidity has largely focused on the relationship between one comorbid disorder, or only a few comorbid disorders, and a primary disorder of interest. With the advent of large integrated data repositories, it is possible to comprehensively examine comorbidity. For example, an examination of comorbidity has given rise to a novel population health index and provided evidence in support of the Adverse Childhood Experiences Study.50-52

This article provides a thumbnail sketch of ASD comorbidity. For every individual with an ASD, there is a temporal order in which the patterns of disease arise, and understanding these patterns may help elucidate a more formal understanding of the etiology and prognosis of sets of disorders within given groups of individuals. The results of such future research may serve to inform other approaches to the study of ASD. At the very least, the present study orients clinicians to the need to consider the physical and biomedical comorbidities in relation to ASD assessment, care, and service integration planning.

Disclosure Statement

The author(s) have no conflicts of interest to disclose.


Kathleen Louden, ELS, of Louden Health Communications provided editorial assistance.

How to Cite this Article

Cawthorpe D. Comprehensive description of comorbidity for autism spectrum disorder in a general population. Perm J 2017;21:16-088. DOI:

    1.    Zablotsky B, Black LI, Maenner MJ, Schieve LA, Blumberg SJ. Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 National Health Interview Survey. Natl Health Stat Report 2015 Nov 13;(87):1-20.
    2.    Rybakowski F, Bialek A, Chojnicka I, et al. [Autism spectrum disorders—epidemiology, symptoms, comorbidity and diagnosis]. [Article in Polish]. Psychiatr Pol 2014 Jul-Aug;48(4):653-65.
    3.    Schendel DE, Overgaard M, Christensen J, et al. Association of psychiatric and neurologic comorbidity with mortality among persons with autism spectrum disorder in a Danish population. JAMA Pediatr 2016 Mar;170(3):243-50. DOI: https:/
    4.    Garg S, Lehtonen A, Huson SM, et al. Autism and other psychiatric comorbidity in neurofibromatosis type 1: Evidence from a population-based study. Dev Med Child Neurol 2013 Feb;55(2):139-45. DOI:
    5.    Paula-Pérez I, Martos-Pérez J. [Asperger’s syndrome and high-functioning autism: Comorbidity with anxiety and mood disorders]. [Article in Spanish]. Rev Neurol 2009 Feb 27;48 Suppl 2:S31-4.
    6.    Geurts HM, Deprey L, Ozonoff S. [Assessment of comorbidity in autism spectrum disorders]. [Article in Dutch]. Tijdschr Psychiatr 2010;52(11):753-61.
    7.    Banaschewski T, Poustka L, Holtmann M. [Autism and ADHD across the life span. Differential diagnoses or comorbidity?] [Article in German]. Nervenarzt 2011 May;82(5):573-80. DOI:
    8.    Singh SK, Hellemans H, Dom G. [Autism spectrum disorder and substance use disorder: An unknown comorbidity?]. [Article in Dutch]. Tijdschr Psychiatr 2012;54(10):893-7.
    9.    Noterdaeme MA, Wriedt E. [Comorbidity in autism spectrum disorders - I. Mental retardation and psychiatric comorbidity]. [Article in German]. Z Kinder Jugendpsychiatr Psychother 2010 Jul;38(4):257-66. DOI:
    10.    Berenguer-Forner C, Miranda-Casas A, Pastor-Cerezuela G, Roselló-Miranda R. [Comorbidity of autism spectrum disorder and attention deficit with hyperactivity. A review study]. [Article in Spanish]. Rev Neurol 2015 Feb 25;60 Suppl 1:S37-43.
    11.    Ragunath P, Chitra R, Mohammad S, Abhinand P. A systems biological study on the comorbidity of autism spectrum disorders and bipolar disorder. Bioinformation 2011;7(3):102-6. DOI:
    12.    Gargaro BA, Rinehart NJ, Bradshaw JL, Tonge BJ, Sheppard DM. Autism and ADHD: How far have we come in the comorbidity debate? Neurosci Biobehav Rev 2011 Apr;35(5):1081-8. DOI:
    13.    Vannucchi G, Masi G, Toni C, Dell’Osso L, Marazziti D, Perugi G. Clinical features, developmental course, and psychiatric comorbidity of adult autism spectrum disorders. CNS Spectr 2014 Apr;19(2):157-64. DOI:
    14.    Bonde E. Comorbidity and subgroups in childhood autism. Eur Child Adolesc Psychiatry 2000 Mar;9(1):7-10. DOI:
    15.    Hepburn SL, Stern JA, Blakeley-Smith A, Kimel LK, Reaven JA. J Ment Health Res Intellect Disabil 2014;7(4):359-78. DOI:
    16.    Joshi G, Biederman J, Petty C, Goldin RL, Furtak SL, Wozniak J. Examining the comorbidity of bipolar disorder and autism spectrum disorders: A large controlled analysis of phenotypic and familial correlates in a referred population of youth with bipolar I disorder with and without autism spectrum disorders. J Clin Psychiatry 2013 Jun;74(6):578-86. DOI:
    17.    Munesue T, Ono Y, Mutoh K, Shimoda K, Nakatani H, Kikuchi M. High prevalence of bipolar disorder comorbidity in adolescents and young adults with high-functioning autism spectrum disorder: A preliminary study of 44 outpatients. J Affect Disord 2008 Dec;111(2-3):170-5. DOI:
    18.    van Steensel FJ, Bögels SM, de Bruin EI. Psychiatric comorbidity in children with autism spectrum disorders: A comparison with children with ADHD. J Child Fam Stud 2013 Apr;22(3):368-76. DOI:
    19.    Joshi G, Wozniak J, Petty C, et al. Psychiatric comorbidity and functioning in a clinically referred population of adults with autism spectrum disorders: A comparative study. J Autism Dev Disord 2013 Jun;43(6):1314-25. DOI:
    20.    Buck TR, Viskochil J, Farley M, et al. Psychiatric comorbidity and medication use in adults with autism spectrum disorder. J Autism Dev Disord 2014 Dec;44(12):3063-71. DOI:
    21.    Simonoff E, Pickles A, Charman T, Chandler S, Loucas T, Baird G. Psychiatric disorders in children with autism spectrum disorders: Prevalence, comorbidity, and associated factors in a population-derived sample. J Am Acad Child Adolesc Psychiatry 2008 Aug;47(8):921-9. DOI:
    22.    Antshel KM, Zhang-James Y, Faraone SV. The comorbidity of ADHD and autism spectrum disorder. Expert Rev Neurother 2013 Oct;13(10):1117-28. DOI:
    23.    Joshi G, Petty C, Wozniak J, et al. The heavy burden of psychiatric comorbidity in youth with autism spectrum disorders: A large comparative study of a psychiatrically referred population. J Autism Dev Disord 2010 Nov;40(11):1361-70. DOI:
    24.    Noterdaeme MA, Hutzelmeyer-Nickels A. [Comorbidity in autism spectrum disorders - II. Genetic syndromes and neurological problems]. [Article in German]. Z Kinder Jugendpsychiatr Psychother 2010 Jul;38(4):267-72. DOI:
    25.    Gabis L, Pomeroy J, Andriola MR. Autism and epilepsy: Cause, consequence, comorbidity, or coincidence? Epilepsy Behav 2005 Dec;7(4):652-6. DOI:
    26.    Steffenburg S, Steffenburg U, Gillberg C. Autism spectrum disorders in children with active epilepsy and learning disability: Comorbidity, pre- and perinatal background, and seizure characteristics. Dev Med Child Neurol 2003 Nov;45(11):724-30. DOI:
    27.    Khetrapal N. Overlap of autism and seizures: Understanding cognitive comorbidity. Mens Sana Monogr 2010 Jan;8(1):122-8. DOI:
    28.    Malow BA. Searching for autism symptomatology in children with epilepsy—a new approach to an established comorbidity. Epilepsy Curr 2006 Sep-Oct;6(5):150-2. DOI:
    29.    Trillingsgaard A, Østergaard JR. Autism in Angelman syndrome: An exploration of comorbidity. Autism 2004 Jun;8(2):163-74. DOI:
    30.    Polyak A, Kubina RM, Girirajan S. Comorbidity of intellectual disability confounds ascertainment of autism: Implications for genetic diagnosis. Am J Med Genet B Neuropsychiatr Genet 2015 Oct;168(7):
600-8. DOI:
    31.    Hogart A, Wu D, LaSalle JM, Schanen NC. The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13. Neurobiol Dis 2010 May;38(2):181-91. DOI:
    32.    Abbeduto L, McDuffie A, Thurman AJ. The fragile X syndrome-autism comorbidity: What do we really know? Front Genet 2014 Oct 16;5:355. DOI:
    33.    Doshi-Velez F, Ge Y, Kohane I. Comorbidity clusters in autism spectrum disorders: An electronic health record time-series analysis. Pediatrics 2014 Jan;133(1):e54-e63. DOI:
    34.    Matson ML, Matson JL, Beighley JS. Comorbidity of physical and motor problems in children with autism. Res Dev Disabil 2011 Nov-Dec;32(6):2304-8. DOI:
    35.    Bejerot S, Humble MB, Gardner A. Endocrine disruptors, the increase of autism spectrum disorder and its comorbidity with gender identity disorder—a hypothetical association. Int J Androl 2011 Oct;34(5 Pt 2):e350. DOI:
    36.    Gadke DL, McKinney C, Oliveros A. Autism spectrum disorder symptoms and comorbidity in emerging adults. Child Psychiatry Hum Dev 2016 Apr;47(2):194-201. DOI:
    37.    Cawthorpe D. A novel population-based health index for mental disorder. Perm J 2013 Spring;17(2):50-4. DOI:
    38.    Al-Salehi SM, Al-Hifthy EH, Ghaziuddin M. Autism in Saudi Arabia: Presentation, clinical correlates and comorbidity. Transcult Psychiatry 2009 Jun;46(2):340-7. DOI:
    39.    Liao TC, Lien YT, Wang S, Huang SL, Chen CY. Comorbidity of atopic disorders with autism spectrum disorder and attention deficit/hyperactivity disorder. J Pediatr 2016 Apr;171:248-55. DOI:
    40.    Pitzianti M, D‘Agati E, Pontis M, et al. Comorbidity of ADHD and high-functioning autism: A pilot study on the utility of the overflow movements measure. J Psychiatr Pract 2016 Jan;22(1):22-30. DOI:
    41.    Boye H, Etting AM, Jørgensen OS. [Comorbidity of infantile autism and blindness]. [Article in Danish]. Ugeskr Laeger 1999 Feb 8;161(6):800-1.
    42.    Mayer EA, Padua D, Tillisch K. Altered brain-gut axis in autism: Comorbidity or causative mechanisms? Bioessays 2014 Oct;36(10):933-9. DOI:
    43.    Li Q, Zhou JM. The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience 2016 Jun 2;324:131-9. DOI:
    44.    Mangiola F, Ianiro G, Franceschi F, Fagiuoli S, Gasbarrini G, Gasbarrini A. Gut microbiota in autism and mood disorders. World J Gastroenterol 2016 Jan 7;22(1):361-8. DOI:
    45.    Fulceri F, Morelli M, Santocchi E, et al. Gastrointestinal symptoms and behavioral problems in preschoolers with Autism Spectrum Disorder. Dig Liver Dis 2016 Mar;48(3):248-54. DOI:
    46.    Kushak RI, buie TM, Murray KF, et al. Evaluation of intestinal function in children with autism and gastrointestinal symptoms. J Pediatr gastroenterol Nutr 2016 May;62(5):687-91. DOI:
    47.    Gregory SG, Anthopolos R, Osgood CE, Grotegut CA, Miranda ML. Association of autism with induced or augmented childbirth in North Carolina Birth Record (1990-1998) and Education Research (1997-2007) databases. JAMA Pediatr 2013 Oct;167(10):959-66. DOI:
    48.    Kolevzon A, Gross R, Reichenberg A. Prenatal and perinatal risk factors for autism: A review and integration of findings. Arch Pediatr Adolesc Med 2007 Apr;161(4):326-33. DOI:
    49.    Cawthorpe D, Davidson M. Temporal comorbidity of mental disorder and ulcerative colitis. Perm J 2015 Winter;19(1):52-7. DOI:
    50.    Felitti VJ, Anda RF, Nordenberg D, et al. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am J Prev Med 1998 May;14(4):245-58. DOI:
    51.    Felitti VJ, Anda RF. The lifelong effects of adverse childhood experiences. In: Chadwick DL, Giardino AP, Alexander R, Thackeray JD, Esernio-Jenssen D, editors. Chadwick’s child maltreatment: Sexual abuse and psychological maltreatment. Vol 2. 4th ed. Florissant, MO: STM Learning, Inc; 2014. p 203-15.
    52.    Anda RF, Fleisher VI, Felitti VJ, et al. Childhood abuse, household dysfunction, and indicators of impaired worker performance in adulthood. Perm J 2004 Winter;8(1):30-8. DOI:


Click here to join the eTOC list or text ETOC to 22828. You will receive an email notice with the Table of Contents of The Permanente Journal.


2 million page views of TPJ articles in PubMed from a broad international readership.


Indexed in MEDLINE, PubMed Central, EMBASE, EBSCO Academic Search Complete, and CrossRef.




ISSN 1552-5775 Copyright © 2021

All Rights Reserved