A Mucinous Cystic Neoplasm Originating from the Gallbladder: A Case Report and Literature Review

Roberto J Rivero-Soto, MD, Zarrin Hossein-Zadeh, MD; JoAnn Coleman, DNP, ACNP; Vanita Ahuja MD, MBA, FACS

ABSTRACT

Introduction: Mucinous cystic neoplasms of the gallbladder are extremely rare, benign, unilocular or multilocular cystic tumors that contain septations. Mucinous cystadenoma, a subtype of mucinous cystic neoplasm, is defined as epithelial cystic proliferations composed of cells that contain intracytoplasmic mucin.

Case Presentation: A 70-year-old African American woman was admitted to the hospital because of progressive lower back pain and inability to walk. She was scheduled for a kyphoplasty. However, the day before surgery, she reported severe abdominal pain radiating to her right shoulder. On further workup, results of abdominal ultrasonography revealed a cystic mass in the lumen of the gallbladder. The kyphoplasty was postponed and a laparoscopic cholecystectomy was performed. Pathologic evaluation of the gallbladder revealed a multiloculated mucinous cystic neoplasm.

Discussion: Mucinous cystadenoma of the gallbladder accounts for 0.02% of the total number of cases in the hepatobiliary system. They are more frequently seen in middle-age women with a mean age at presentation of 45 years. Symptoms vary depending on the location of the tumor, but it typically presents as acute or chronic right upper quadrant pain, epigastric pain, and nausea and vomiting. The multilocular form is more common than unilocular. The cystic lesions can be filled with serous, hemorrhagic, mucinous, or mixed fluids. Clinicians should be suspicious of mucinous cystadenoma of the gallbladder when common gallbladder disease is excluded because malignant features can be present in the lesion.

INTRODUCTION

Mucinous cystic neoplasms (MCNs) of the gallbladder are extremely rare, benign, unilocular or multilocular cystic tumors that contain septations. The World Health Organization tumor classification defines MCNs as epithelial cystic neoplasms composed of cells that contain intracytoplasmic mucin. The liver is the most common site of origin, followed by the extrahepatic biliary system. MCNs originating in the gallbladder account for only 0.02% of hepatobiliary cases.

The aim of this report is to review the literature of previous cases to contrast with the present one. An online search of available databases, including MEDLINE/PubMed, was conducted. Terms used included mucinous cystadenoma, mucinous cystic neoplasms, biliary cystic neoplasms, hepatobiliary cystadenoma, and mucinous cystadenocarcinoma. Inclusion criteria comprised all cases identified in alive patients, and articles written in English.

CASE PRESENTATION

Presenting Concerns

A 70-year-old African American woman with a history of chronic osteomyelitis of the lumbar spine was scheduled for an L4-L5 kyphoplasty. During hospitalization the day before her surgery, she reported severe, sharp, stabbing abdominal pain that radiated to her back and right shoulder. Vital signs were within normal limits. Physical examination was unremarkable except for severe right upper quadrant pain on palpation. Laboratory studies were remarkable for mildly elevated white blood cell count (11,800/mm³), anemia (hemoglobin, 9.3 g/dL), and mildly elevated amylase level (127 U/L). Liver enzymes and alkaline phosphatase were within normal limits. An ultrasonogram of the abdomen revealed a focal, predominantly hypoechoic mass in the gallbladder fundus measuring 2.7 cm × 1.8 cm × 2.7 cm (Figure 1) without central flow on Doppler analysis. Stellate hyperechoic septations were noted in the mass. The lesion demonstrated well-defined margins with no invasion. No gallstones, sludge, wall thickening, pericholecystic fluid, and ductal dilation were

Figure 1. Mucinous cystic neoplasm on ultrasound evaluation. Arrow indicates septae of the cystic lesion.
A Mucinous Cystic Neoplasm Originating from the Gallbladder: A Case Report and Literature Review

The differential diagnosis included gallbladder polyp, septate gallbladder, adenomyomatosis, and cystadenocarcinoma of the gallbladder.

Therapeutic Intervention and Treatment

The kyphoplasty was postponed, and a laparoscopic cholecystectomy was performed, during which the gallbladder was removed without any intraoperative complications. The patient's right upper quadrant pain improved greatly after the second postoperative day. The postsurgical course was uncomplicated, and the patient was taken back to the operating room for a kyphoplasty 5 days after the laparoscopic cholecystectomy.

Follow-up and Outcomes

On pathologic examination, the gross specimen consisted of a partially opened gallbladder measuring 9 cm × 3 cm × 2 cm. The serosa was pinkish-gray with a cystic bulging mass in the fundus measuring 3 cm × 2 cm × 1 cm (Figure 2). The mass contained multiloculated cystic spaces with mucoid material (Figure 3), with sizes ranging from 0.2 cm to 1 cm. The epithelial lining was smooth, with spindle-shaped cells densely packed beneath an ovarian-like stroma (Figure 3). The gallbladder wall measured 0.2 cm in thickness. Final pathologic diagnosis was “multiloculated mucinous cystic neoplasm.”

As of this writing, the patient has not shown any radiographic evidence of recurrence on computed tomography (CT) scans in 3 postoperative visits at 6 weeks, 3 months, and 6 months.

DISCUSSION

MCNs are benign cystic proliferations of the hepatobiliary epithelium. Lesions originate in the liver in 85% of cases and affect women more frequently, with a mean age at presentation of 45 years. The first case of MCN of the gallbladder was reported by Bishop in 1901, in which a 42-year-old woman presented with dull, sickly abdominal pain and intermittent biliary colic and jaundice. In addition, Devaney et al reported 52 MCN cases, of which 50 were present in women (96%). They also found that when associated dysplasia was not present, 96% of cases occurred in females.

Histologically, there are 3 main subtypes of MCNs described throughout the literature: Pyloric gland, intestinal, and biliary. The pyloric gland type is most commonly found in the gallbladder, whereas the intestinal type is found in the extrahepatic bile ducts. Some types of MCNs have ovarian-like stroma that contain estrogen and progesterone receptors, and these types affect women more often. The presence of ovarian-like stroma and spindle-shaped cells is important because it differentiates MCNs from intracystic papillary neoplasms of the gallbladder. In contrast, other subtypes of MCNs lack ovarian-like mesenchymal stroma and affect men more often.

Multilocular MCNs are more common than unilocular. In our review, 12 cases were multilocular (13 including the current case), and 3 cases were not reported. Moreover, lesions can be filled with serous, hemorrhagic, mucinous (Figures 3 and 4), or mixed fluids. In our literature search, only 7 cases mentioned the content of the lesion: 4 mucinous, 1 serous, 1 described as “non-mucinous,” and 1 described as “bile-stained hyalinized material.”

The origin of MCNs remains unclear. Previous studies have hypothesized that MCNs originate from ectopic remnants of embryonal gallbladder tissue and aberrant hamartomatous bile ducts. However, Devaney et al did not support this hypothesis on the basis of the presence of simple columnar epithelium, which is characteristic of bile duct and/or gastric epithelium. Additionally,
MCNs have been considered acquired lesions because of their multilocularity and dense cellular walls accompanied by copious secretions.11

Discrepancies across the literature exist regarding the malignant potential. Some authors believe that approximately 13% of cystadenomas have dysplastic changes that can progress to a malignant form.12 Transformation of Rokitansky-Aschoff sinuses has also been described.13 However, in cases when dysplasias have been reported, lesions were noninvasive and contained only nests of malignant cells.7 Albores-Saavedra et al14 disagree with the malignant potential of MCNs. They suggest that carcinomas in the biliary tract arise from flat dysplasia and follow the dysplasia-carcinoma in situ sequence for invasion.

Most patients with MCNs are asymptomatic.14 However, when symptoms develop, clinical presentation is widely variable and nonspecific (Table 1). In this literature review, right upper quadrant pain and previous chronic abdominal pain was present in 93% and 100% of patients, respectively. Jaundice was present in 6 (46%) of 13 reported cases, and bile duct obstruction was seen in 5 cases of 12 reported (41%). Findings of laboratory studies are also variable, with 6 cases having normal values, but it was noted that increased bilirubin levels were always present when other liver function tests were abnormal.

Across the literature,4-7,10,11,15-22 case workup and diagnosis included right upper quadrant ultrasonogram and/or CT scan in most cases. Ultrasonography is considered to be more sensitive for internal features of the cysts (ie, septations and debris).23 Typical ultrasonographic findings include anechoic cystic lesions with thickened irregular walls and internal septations.23 The lack of central blood flow on Doppler ultrasonograms is suggestive of a benign cystic lesion.

CT scans are mainly used for definition of the anatomy, size, and extent of the lesions. In our case, repeated CT scans were performed to evaluate for possible recurrence or evidence of disease because of the lack of literature available regarding follow-up of MCNs. Endoscopic retrograde cholangiopancreatography (ERCP) is recommended when obstruction of the biliary tree is present or suspected, because it can be both diagnostic and therapeutic. However, despite its therapeutic potential, ERCP is not as effective as ultrasonography and CT for evaluation of the origin, infiltration, and extent of the tumor.15 Because of the presence of mostly benign tissue with focal areas of malignancy, ERCP brushings, if performed, have a high likelihood of yielding false-negative results.24 Importantly, ultrasound- or CT-guided fine-needle aspiration for biopsy is generally not recommended, because it increases the chances of seeding the tumor in the peritoneal cavity.25

Surgical management was the treatment modality in all cases in our literature review, with either open or laparoscopic cholecystectomy in most cases. The MCN in our present case was removed via laparoscopic cholecystectomy.

CONCLUSION

MCNs of the gallbladder are rare, and no established guidelines for appropriate management have been developed. This case is an example of the lack of consistent presentation and...
laboratory findings, which makes MCNs difficult to diagnose and to distinguish from other cystic lesions and gallbladder diseases. In addition, the lack of consistent evidence regarding the malignant potential of MCNs of the gallbladder makes this entity a diagnostic and therapeutic dilemma that requires good clinical judgment for successful management of patients. The only consistent consensus across the literature is that all suspected MCNs originating in the gallbladder should be imaged, surgically removed, and evaluated under the microscope to determine the nature of the disease.

Table 1. Clinical characteristics of previously reported mucinous cystic neoplasms of the gallbladder

<table>
<thead>
<tr>
<th>Case no.</th>
<th>Author, y</th>
<th>Age, y/sex</th>
<th>Jaundice</th>
<th>Bile duct obstruction</th>
<th>Laboratory results</th>
<th>Size, cm</th>
<th>Management</th>
<th>Content</th>
<th>Loculation</th>
<th>Abdominal mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bishop, 1901</td>
<td>42/F</td>
<td>Yes</td>
<td>NR</td>
<td>NR</td>
<td>Mucin</td>
<td>Partial removal of gallbladder mass</td>
<td>Multilocular</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Kordenat, 1930</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sambaugh, 1933</td>
<td>24/F</td>
<td>Yes</td>
<td>NR</td>
<td>NR</td>
<td>15</td>
<td>Bile-stained hyalinized material</td>
<td>Multilocular</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ishak et al, 1977</td>
<td>52/F</td>
<td>No</td>
<td>No</td>
<td>NR</td>
<td>NR</td>
<td>Open cholecystectomy</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Simmons, 1989</td>
<td>65/F</td>
<td>Yes</td>
<td>Yes</td>
<td>NR</td>
<td>15</td>
<td>Open laparotomy</td>
<td>NR</td>
<td>Multilocular</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Devaney et al, 1994</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Multilocular</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Spector, 2003</td>
<td>47/F</td>
<td>Yes</td>
<td>Yes</td>
<td>Normal</td>
<td>4.6 × 4.2 × 4.4</td>
<td>Cholecystectomy, bile duct resection, and Roux-en-Y hepaticojejunostomy</td>
<td>Mucin</td>
<td>Multilocular</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>Terada et al, 2003</td>
<td>88/M</td>
<td>Yes</td>
<td>No</td>
<td>Elevated total bilirubin, alkaline phosphatase, liver enzymes; normal GGT</td>
<td>3.5 × 3 × 3</td>
<td>Cholecystectomy</td>
<td>Mucin</td>
<td>Multilocular</td>
<td>NR</td>
</tr>
<tr>
<td>9</td>
<td>Rooney, 2005</td>
<td>38/F</td>
<td>No</td>
<td>No</td>
<td>Normal</td>
<td>1.2 × 0.8 × 0.8</td>
<td>Laparoscopic cholecystectomy</td>
<td>NR</td>
<td>Multilocular</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>Waldmann et al, 2006</td>
<td>75/F</td>
<td>No</td>
<td>Yes</td>
<td>Elevated liver enzymes</td>
<td>17</td>
<td>En-bloc cholecystectomy, cystectomy, lymph node and liver wedge resection</td>
<td>Serous</td>
<td>Multilocular</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>McCague et al, 2008</td>
<td>32/F</td>
<td>No</td>
<td>Yes</td>
<td>Elevated alkaline phosphatase, direct bilirubin</td>
<td>12 (polyp)</td>
<td>Laparoscopic cholecystectomy</td>
<td>NR</td>
<td>Multilocular</td>
<td>No</td>
</tr>
<tr>
<td>12</td>
<td>Gokalp et al, 2009</td>
<td>33/F</td>
<td>No</td>
<td>No</td>
<td>Normal</td>
<td>0.67 × 0.28</td>
<td>Laparoscopic cholecystectomy</td>
<td>NR</td>
<td>Multilocular</td>
<td>No</td>
</tr>
<tr>
<td>13</td>
<td>Sistla, 2009</td>
<td>50/F</td>
<td>No</td>
<td>No</td>
<td>Normal</td>
<td>11 × 7.5 × 11.2</td>
<td>Cholecystectomy, partial liver resection</td>
<td>Nonmucinous</td>
<td>Multilocular</td>
<td>No</td>
</tr>
<tr>
<td>14</td>
<td>Zevallos Quiroz et al, 2014</td>
<td>75/F</td>
<td>Yes</td>
<td>Yes</td>
<td>NR</td>
<td>NR</td>
<td>Cholecystectomy and choledochoscopy</td>
<td>NR</td>
<td>Multilocular</td>
<td>No</td>
</tr>
<tr>
<td>15</td>
<td>Moussa, 2017</td>
<td>29/F</td>
<td>No</td>
<td>No</td>
<td>Normal</td>
<td>3</td>
<td>Open cholecystectomy</td>
<td>NR</td>
<td>NR</td>
<td>No</td>
</tr>
<tr>
<td>16</td>
<td>Rivero-Soto et al, 2018</td>
<td>70/F</td>
<td>No</td>
<td>No</td>
<td>Decreased Hb and Hct, mildly elevated amylase and WBC count</td>
<td>3 × 2 × 1</td>
<td>Laparoscopic cholecystectomy</td>
<td>Mucin</td>
<td>Multilocular</td>
<td>No</td>
</tr>
</tbody>
</table>

* Current study.

F = female; GGT = γ-glutamyl transpeptidase; Hb = hemoglobin; Hct= hematocrit; M = male; NR = not reported; WBC = white blood cell.
Disclosure Statement
The author(s) have no conflicts of interest to disclose.

Acknowledgments
Kathleen Louden, ELS, of Louden Health Communications performed a primary copy edit.

How to Cite this Article

References